A Laboratory View of Exoplanet Cloud Particles & their Properties
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has been observed to have a flat transmission spectrum Simulated parcel trajectories through an atmosphere o4 / o e gamcle o may be present in cooler, super-Earth atmospheres clouds in operation at Penn State (Harrison et al. 2016)
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* It is reasonable to assume the presence of clouds in exoplanet : | : B code
atmospheres is a wide spread phenomena, therefore ! @ oc | ~ Trap !
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OBJ ECTIVE 3 " Fig. 4. Counter-clockwise from left top - Ammonium Nitrate chemical structure, bulk
__________ — ' A crystal, and crystal structure of phases V, 1V, and I, the three structures studied in this Fig. 10: Side view of Advanced EDB. Two copper plates acting as DC and G electrodes
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* Why? Limited understanding of exoplanet
atmospheric particulates, their characteristics, and
what properties (if any) may be exploited for remote

characterization RESULTS

* What? The scattering and polarization of light by
particulates across the visible spectrum
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Investigations into whether or not we could observe an Our novel experiment has proven useful for Hattwave Plat | 0 Areas where sctiering
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